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Abstract

This work is a part of a series of publications devoted to the development of surrogate (semi-empirical) models for the prediction of
fibrinogen adsorption onto polymer surfaces. Since fibrinogen is one of the key proteins involved in platelet activation and the formation of
thrombosis, the modeling of fibrinogen adsorption on the surface of blood-contacting medical devices is of high theoretical and practical sig-
nificance. We report here, for the first time, on the incorporation of three-dimensional structures of polymers obtained from atomistic simulations
into conventional mesoscopic-scale calculations. Low energy conformations derived from molecular dynamics simulations for 45 representatives
of a combinatorial library of polyarylates were used in an improved modeling procedure (referred to as ‘‘3D surrogate model’’) instead of
simplistic two-dimensional representations of polymer structures, which were used in several previous models (collectively referred to as
‘‘2D surrogate models’’). In the framework of this 3D model we created 12 model sets of polymers to account for their chirality, conformational
diversity and the structural influence of a solvent. For each polymer set, three-dimensional molecular descriptors were generated and then ranked
with respect to the experimental fibrinogen adsorption data by means of a Monte Carlo decision tree. The most significant descriptors identified
by decision tree and the experimental dataset were utilized to predict fibrinogen adsorption using an artificial neural network (ANN). The best
prediction achieved by the 3D surrogate model demonstrated a noticeable improvement in the predictive quality as compared to the previously
used 2D model (as evidenced by the increase in the average Pearson correlation coefficient from 0.54� 0.12 to 0.67� 0.13). The predictive
quality of the 3D surrogate model compares favorably with the best results previously reported for extended 2D model that combines an
ANN with partial least squares (PLS) regression and principal component (PC) analysis. The significance of the newly developed 3D model
is that it allows high accuracy prediction of fibrinogen adsorption without the need for experimentally-derived descriptors and it has better
predictive quality than the original 2D surrogate model due to utilization of realistic polymer representations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Prediction of polymer material properties

Rapid developments in the field of combinatorial design
of new biologically relevant polymeric materials have led to
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an inevitable growth in the number of potential biomaterial
candidates [1]. This trend makes it practically impossible to
experimentally evaluate the important polymer material prop-
erties in large combinatorial libraries, and, consequently a
search for new methods that allow prediction of polymer
material properties becomes paramount. Two major computa-
tional approaches e QSPR (quantitative structureeproperty
relationship) models and machine learning e have been suc-
cessfully used to this end. In both methods the chemical
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structure of a polymer is usually represented by a set of de-
scriptors, which are drawn from experimental properties or
computed ab initio. Landrum et al. [2] have shown that a care-
ful choice of descriptors allows efficient predictive models to
be built. These authors identified ten descriptors that captured
the relevant physics and chemistry of the problem and success-
fully predicted the molecular weight of polymers using ma-
chine learning algorithms such as hierarchical clustering, k-
nearest neighbors (KNN) algorithm, decision trees, support
vector machines (SVMs) and bag classifiers [2]. Recently
Duce et al. [3] suggested that in the case of polymers the
need for molecular descriptors restricts the applicability of
predictive models, and proposed a recursive neural network
(RecNN) that directly incorporates the structured representa-
tion of the polymers based on the two-dimensional (2D) graph
of the repeating unit treated as a rooted chemical tree [3].

QSPR models have been widely used to predict the glass tran-
sition temperature (Tg) of amorphous polymers, the fundamen-
tal property that affects heat capacity, coefficient of thermal
expansion and viscosity of a polymer. The most referenced
predictive model of Tg was produced by Bicerano [4] and subse-
quently numerous researchers have attempted to achieve the
same level of accuracy in their predictions [4e7]. Beyond the
problem of the accurate estimation of Tg, other polymer proper-
ties relevant to their end-use performance have been the focus
of developers of predictive models. Among these, the prediction
of three-dimensional polymer structures with exceptional me-
chanical properties [8], qualitative and quantitative predictions
of composition of multicomponent bioglasses [9], the com-
puter-aided design of polymer blends [10], and polymererecep-
tor interactions in biosensors [11] are worth mentioning.
Surprisingly, the prediction of protein adsorption onto polymer
surfaces, cell attachment, and cell proliferation (collectively
referred to in this article as the ‘‘bioresponse’’) have thus so
far not been extensively modeled.

1.2. Prediction of fibrinogen adsorption using surrogate
modeling and combined models

Protein adsorption onto polymer surfaces plays a crucial
role in biomaterials design [12]. Adsorption of fibrinogen on
polymer surfaces is especially important within the context
of blood-contacting medical implants, due to fibrinogen’s
role in platelet activation and thrombus formation. Fibrinogen
is the most abundant of the adhesive proteins present in plasma
and can therefore be taken as a marker for the tendency of
a polymer surface to support the attachment and subsequent
activation of platelets. The predictive modeling of fibrinogen
adsorption on polymer surfaces is of value to a wide range
of biomaterials scientists and biomedical engineers.

We have recently reported on the design of surrogate (semi-
empirical) models [13e15] for the prediction of cellular
response to and fibrinogen adsorption on the surfaces of
tyrosine-derived polyarylates synthesized in Kohn’s research
group [16e18]. In these studies, the polyarylates served as
a ‘‘test case’’ for the validation of the fibrinogen adsorption
models e the methodology is quite general and can be readily
adopted to other polymer libraries. Surrogate modeling of
fibrinogen adsorption was performed in two stages. First, 104
[14] or 862 [15] two-dimensional (2D) molecular descriptors
were calculated for each polymer based on its molecular
structure and combined with two experimentally measured
descriptors: glass transition temperature (Tg) and airewater
contact angle (q). Then the significance of each descriptor
with respect to the experimental fibrinogen adsorption data
was determined by means of a decision tree methodology.
In the second stage, the most significant descriptors in con-
junction with measured fibrinogen adsorption data were
used to build an artificial neural network (ANN) model.
This model [14] required experimentally-derived descriptors
(i.e., Tg and q) as well as 104 computed descriptors to
achieve sufficiently accurate predictions that allowed one to
identify polymers with the highest and lowest fibrinogen ad-
sorption. Since for most practical biomedical implant appli-
cations either low or high protein adsorption is required,
the ability to identify these ‘‘extreme’’ polymers is a signifi-
cant advance that allows avoiding experimental evaluation of
non-optimal polymer candidates.

While the above modeling approach provided some time
savings, the need to include experimentally-derived descriptors
in the model was a limitation. In principle, it should be possible
to predict fibrinogen adsorption on virtual polymer surfaces in
the absence of any experimentally-derived descriptors. Toward
that goal, the same group of authors [19] developed an extended
surrogate 2D model that eliminated the experimentally deter-
mined Tg and q from the set of 106 descriptors. To maintain
the accuracy of the model, several aspects of the ANN were
combined with partial least squares (PLS) regression and prin-
cipal component analysis (PCA) e well-known techniques in
conventional QSAR approaches [20]. On the one hand, PLS re-
gression and PC analysis can be employed independently for
surrogate modeling of fibrinogen adsorption. Alternatively,
they both can be used to select precisely the most significant
combinations of descriptor variables, and, hence, to account
for synergy between apparently uncorrelated parameters. Aug-
menting the ANN by the PLS-extracted descriptor set provided
better representation of the nonlinear relationship between the
structural features of the polymer and fibrinogen adsorption
on the polymer surface [19].

1.3. The rationale for combining molecular dynamics
(MD) and surrogate modeling

Both methodologies described above require calculation
and input of molecular descriptors for each polymer. Smith
et al. designed two successful surrogate models [14,19] to pre-
dict fibrinogen adsorption onto polymer surfaces in which 2D
chemical descriptors were chosen to quantify the structure of
polymers at the molecular level. This class of descriptors
has proven to be fairly successful in prediction of fibrinogen
adsorption by means of QSAR analysis in spite of the fact
that these descriptors do not take into account the conforma-
tional specificity of each polymer, which is known to play
a crucial role in interactions between the proteins and the
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surfaces [12]. Although X-ray or NMR nuclear Overhauser ef-
fect structural experiments generally serve as the best source
of reliable 3D information, these methods are too labor inten-
sive to be useful for the creation of 3D descriptors of polymer
libraries containing large numbers of individual polymers. As
an alternative, we suggest that molecular dynamics (MD) sim-
ulations represent the most attractive choice: the subtle details
of molecular motion, interactions and structure can be
extracted readily from computer simulations performed under
realistic conditions of temperature and pressure. MD simula-
tions of polymers have a relatively long and well-established
history and, in the present work, are used to determine 3D
conformations of 45 representatives selected from the polyar-
ylate library. This allows expansion of the database of input
parameters for the ANN model by including more complex
three-dimensional molecular descriptors that describe 3D
polymer structure and possibly reflect molecular level char-
acteristics of polymer surfaces. The objective of the present
work is three-fold, namely: (1) generation of an ANN model
based upon the 3D structure of the polymer obtained from
MD simulations, (2) investigation of the influence of differ-
ent levels of 3D organization within the framework of this
model on its accuracy, and (3) comparative assessment of
the results obtained with those previously reported by Smith
et al. [14] in order to estimate the predictive quality of both
2D and 3D-based modeling designs and identify further di-
rections for their improvement.
2. Materials/methods/background

2.1. Combinatorial library design

The combinatorial library of polyarylates was created using
a parallel synthesis approach developed in Kohn’s laboratory
[16e18]. Starting from the pioneering work of Smith and co-
authors [13], it has become an ideal dataset for calibrating and
testing computational models for prediction of bioresponse
[14,15,19,20]. The library comprises 112 structurally related al-
ternating co-polymers (see Fig. 1). It was synthesized using
eight commercially available diacids and 14 tyrosine-based di-
phenols. Each repeat unit of a polymer consists of a diacid
(DA) and a diphenol (DP) component. The structure of these
building blocks was varied at Yand R, respectively. The number
of methyl groups on the backbone of the DP component is also
variable (n¼ 1 or 2, Fig. 1). The naming convention employed
for polyarylates is based on the names of their acid and alcohol
precursors (see Ref. [14] for detailed description). The names of
the 45 polymers utilized in the present work are given in Table 1.

2.2. Experimental methods

The experimental part consists of the preparation of polymer
films and the immunofluorescence assay procedure for the mea-
surements of fibrinogen adsorption in a rapid screening format.
All results are reported in detail in [21]. The polymers were
m
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prepared using a solvent casting procedure that can be briefly
described as follows. After dissolving polymers in 5% (w/v)
methylene chloride, the polymer solutions were filtered through
0.45 mm PTFE filters (Whatman Inc., Clifton, NJ). Then, the
polymer solutions were placed on the plates with individual
polypropylene microtiter wells and dried in a temperature-con-
trolled oven at 50 �C for 3 h to evaporate methylene chloride and
to produce thin and smooth polymer films inside the wells [21].
The immunofluorescence assay protocol includes two incuba-
tion steps followed by fluorescence measurements performed
using a Spectra Max Gemini fluorescence reader (Molecular
Devices, Sunnyvale, CA). A 25 mL aliquot of fibrinogen diluted
with phosphate-buffered saline (PBS) to 3 mg/mL concentration
was incubated into polyarylate-filled microwells on a polypro-
pylene plate for 1.5 h at 37 �C. After rinsing eight times with
PBS, the wells were incubated again with 1% (w/v) bovine
serum albumin (BSA) in PBS for 0.5 h at 37 �C to block nonspe-
cific antibody binding. Subsequently, the rinsing procedure
was repeated three times and a background fluorescence

Table 1

Polymer numbering scheme: polymers are placed in the order of increasing

experimentally measured fibrinogen adsorption

No. Pendent Diacid No. Pendent Diacid

1 DTiB Sebacate 24 DTB Glutarate

2 HTH Sebacate 25 HTE Adipate

3 DTO Glutarate 26 DTsB* Adipate

4 DTO Sebacate 27 DTM Methyl adipate*

5 HTH Adipate 28 DTB Adipate

6 HTH Suberate 29 DTB Succinate

7 DTO Adipate 30 DTE Adipate

8 DTBn Sebacate 31 DTH Succinate

9 DTO Suberate 32 DTsB* Glutarate

10 DTH Adipate 33 DTBn Methyl adipate*

11 DTiB Adipate 34 DTM Suberate

12 DTH Suberate 35 DTBn Adipate

13 DTBn Suberate 36 DTH Diglycolate

14 DTH Methyl adipate* 37 DTO Diglycolate

15 DTH Glutarate 38 DTM Adipate

16 DTM Sebacate 39 DTiP Methyl adipate*

17 DTB Suberate 40 HTE Methyl adipate*

18 HTE Suberate 41 DTE Glutarate

19 DTsB* Suberate 42 DTsB* Methyl adipate*

20 DTiB Succinate 43 DTE Methyl adipate*

21 DTiP Adipate 44 HTE Succinate

22 DTO Succinate 45 DTB Diglycolate

23 DTB Methyl adipate*

The ‘*’ symbol indicates the presence of more than one chiral center in the

polymer repeat unit.
measurement was taken. Fluorescently labeled antibodies
were prepared [21] and allowed to bind to fibrinogen adsorbed
onto polymer surfaces for 1.5 h at 37 �C. Then the final fluores-
cence measurements were carried out with human FA to non-
coated propylene used as an internal control.

2.3. Computational procedure

The computational tasks of this project can be summarized
in a stepwise manner as follows: generation of 3D structures of
the polymers, structure minimization, MD simulations, calcu-
lation of 3D descriptors, ranking descriptors with respect to
experimental fibrinogen adsorption data, and prediction of
fibrinogen adsorption. This protocol includes the sequential
use of commercial simulation packages such as MacroModel
v. 8.5 (Schrödinger [22]) and DRAGON (Milano Chemomet-
rics and QSAR Research Group [23]) as well a custom
modified C5 decision tree [24] and ANN [14] algorithms.
A schematic representation of the entire computational
procedure is shown in Fig. 2. Such a sequential utilization of
different kinds of software (i.e., combination of micro- and
meso-scale simulations) usually requires taking into consider-
ation numerous details starting from the compatibility of
inputeoutput file formats and ending up with a size of each
polymer model compound (e.g., the DRAGON software
cannot accommodate a molecular system which exceeds 300
atoms).

Chirality of polymers is an important issue that was also ad-
dressed in the present study. According to the definition (con-
ditions of parallel synthesis), L-tyrosine-derived polyarylates
have a primary chiral center on the carbon atom next to the
amine group. This center always gives rise to L optical isomers.
From the list of polymers in Table 1 it is evident that 11 out of
45 selected polyarylates exhibit a second chiral center located
in a pendent chain (DTsB) or/and in a diacid component
(methyl adipate). From the modeling point of view the pres-
ence of two chiral centers requires taking into consideration
and generation of all possible enantiomers thus implying addi-
tional complexity to the modeling task. Information regarding
chirality was requested from manufacturers and it was con-
cluded that the actual polymers are likely represented as 50/
50 racemic mixture of L and R isomers with respect to these
secondary chiral centers. To simplify modeling of the represen-
tation of the chiral species, two separate sets containing exclu-
sively L and R isomers with respect to the secondary chiral
DRAGON

Computational Procedure

building,
minimization,

MD

MacroModel 

3D descriptors

Decision
Tree

relating descriptors
to FA

ANN

prediction of FA

Fig. 2. Schematic representation of computational procedure.
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centers were built to account for the influence of chirality in our
fibrinogen adsorption predictive models. Thus, the set of 45
polymers employed in this study was constructed in such
a way that all polymers in the set are represented only by L
optical isomers with respect to the primary chiral center in
the backbone and 11 polymers are represented by both L and
R enantiomers (see Table 1 for naming convention).

2.4. MD simulations

MD simulations were performed in stage I of this work on
the polymers from the polyarylate library for which data on
fibrinogen adsorption were previously obtained. To our know-
ledge this is the first time a MD-based conformational study
was performed for the subset of a combinatorial library con-
sisting of 45 structurally related biodegradable polymers.
The MacroModel (version 8.5) commercial software [22]
with the generalized Born/surface area (GB/SA) implicit sol-
vent model [25] was employed throughout this stage.

Tyrosine-derived polyarylates comprise structural elements
that can be found in peptides, carboxylic acids, hydrocarbons
and esters. The OPLS-all atom force field was chosen for the
present MD simulations [26e28]. This force field is one of
the best empirical force fields available for condensed-phase
simulations of peptides and it has also been proven to yield
comparable results for a wide variety of organic systems. Con-
veniently, when the MacroModel performs energy calculations,
the program checks the ability of the force field in use to mimic
the real potential energy of the investigated molecules. This
check was performed for all 45 polymers and it indicated
only high quality force field parameters.

The initial configurations for MD simulations of amorphous
polymer models were constructed as follows. First, a repeat unit
for each of the selected polymers was built and its energy was
minimized with an all atom representation and no constraints
applied. Next, polymer chains containing 3e4 repeat units (to
satisfy a system size requirement of 300 atoms) were built
with head-to-tail connection. In addition, several model struc-
tures of 20 repeat units length were constructed for comparison.
The stepwise chain construction scheme, similar to that em-
ployed in the conventional rotational isomeric state (RIS)
model, was employed to generate the initial structures. The en-
ergy of all polymer chains was also minimized in vacuum and in
the presence of implicit solvent (water) by means of the Polak-
Ribiere conjugate gradient (PRCG) scheme. Convergence using
the PRCG with a threshold of 0.05 was achieved after 3000e
5000 iterations. Constant temperature (NVT) MD simulations
were performed at 298 K maintained by a Nose-Hoover thermo-
stat in vacuum and in the presence of implicit solvent (water)
with the integration time step of 1 fs. The cutoff distances em-
ployed in vacuum simulations were 7 Å for non-bonded and
12 Å for electrostatic interactions. Extended cutoffs of 8 Å
and 20 Å, respectively, for non-bonded and electrostatic interac-
tions were used for simulations in implicit water. Polymer struc-
tures were equilibrated for 0.3e0.4 ns until full convergence of
the energy. The total simulation time was 1 ns where the latter
0.6 ns was the production time used to collect statistics. To
ensure that at the end of the production time the trajectories
converged into similar final configurations and that the most sig-
nificant descriptors derived from such configurations are repro-
ducible, several test simulations were performed using different
initial structures generated for the selected subset of polymers.
Relative RMSD of atomic positions in final configurations were
less than 0.4, 0.7 and 0.9 Å for heavy atoms of a backbone, for
heavy atoms of entire molecule and for all atoms of the polymer,
respectively.

2.5. Three-dimensional (3D) molecular descriptors

During the past decade it has become apparent that 3D mo-
lecular structure must be incorporated in both QSPR and ma-
chine learning applications through inclusion of geometrical
information and/or physicochemical atomic properties. These
so-called 3D descriptors are usually calculated based on either
crystallographic coordinates or molecular geometry obtained
by computational chemistry. The 3D geometrical representation
of a molecule is encoded in RDF (radial distribution function)
descriptors, 3D-MoRSE (3D-molecule representation of struc-
tures based on electron diffraction) descriptors and WHIM
(weighted holistic invariant molecular) descriptors [29]. Re-
quirements for 3D descriptors include their independence of
the size of a molecule, uniqueness regarding 3D arrangement
of the atoms and invariance with respect to translation and rota-
tion of the molecule. Topological molecular indices represent
a special subset of 3D descriptors and are derived from the struc-
tural graph of a molecule by using the geometric distances
between atoms instead of the topological distances (e.g., Randic
molecular profiles). Developments in combinatorial chemistry
and high-throughput screening approaches initiated a search
for the descriptors that would incorporate as much chemical
and structural information as possible and would be suitable
for rapid screening of large populations of compounds. The
novel molecular descriptors called GETAWAY (geometry, to-
pology and atom-weights assembly) which account for both
the geometrical and the topological information weighted by
chemical information encoded in selected atomic weightings
(unit weights, mass, polarizability, electronegativity) were
recently devised [30,31]. They have already shown good predic-
tive capability in physicochemical property modeling and
appear to be suitable for similarity/diversity analysis of large
chemical databases [31]. In the present work all types of 3D
descriptors mentioned above (total 721) were calculated by
the DRAGON software [23] for the polymer conformations
obtained from local minimization and MD simulations.

2.6. Decision tree approach

Decision tree analysis was employed in stage II of our mod-
eling procedure after the 3D descriptors were generated for
each polymer. Decision trees (DTs) are commonly used for
the description, classification and generalization of data [32].
The DTs that are involved in descriptor analysis classify data
points by starting at the top of the tree (root node) and moving
down the tree by creating a hierarchy of descriptor values on an
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‘‘if-then-else’’ basis at each branch point until the terminal
(leaf) node is reached. In these top-down constructions the
data are recursively divided into subsets based upon the best
classifying descriptors at each level. The C5 DT algorithm
[24] employed in the present study evaluates the significance
of each descriptor with respect to the set of experimental
fibrinogen adsorption data using the concept of information
gain introduced by Shannon [33,34]. To take into account the
experimental uncertainty, the conventional C5 routine was aug-
mented by a Monte Carlo (MC) procedure. A series of 10 000
computer-based pseudo-experiments were generated where
the measured values of fibrinogen adsorption were randomly
perturbed within a normal distribution defined by the experi-
mental mean and standard deviation. A single most relevant
descriptor (i.e., the descriptor with the highest information
gain) was obtained from each pseudo experiment. Descriptor
results from all MC iterations were summarized into a histo-
gram and the three descriptors with the highest counts in this
histogram were taken as input variables for the ANN.

2.7. Artificial neural networks

In stage III of the present study we utilized the most signifi-
cant descriptors in conjunction with the experimental dataset to
build an ANN model. ANNs are machine learning routines that
perform nonlinear multidimensional vector mappings [35e37].
Only recently, conventional ANNs have been used to model
polymer systems that represent complex classes of highly non-
linear materials. There are several parameters (weights) that
need to be defined for ANN. This problem can be handled by
augmenting ANNs with genetic algorithms (GA) and Markov
chains to enhance the accuracy of prediction [35]. It became
a common practice to estimate an accuracy of the model on
new data by splitting the dataset randomly into two halves be-
fore model building. One half, the training set, is used to train
the model while the remaining half, the validation set, is used to
validate the model. The ANN in this study is represented by
a standard feedeforward network in which every layer is con-
nected to the previous layer. In particular, it employs a two-
layer perceptron with two hidden neurons utilizing a sigmoid
function with an inverse length scale parameter (k) equal to
0.1. All input variables were scaled to the unit interval. It
was previously shown (see Ref. [14] also for more mathemat-
ical details of this ANN model) that the predictive capability of
this ANN is essentially independent of the choice of intrinsic
variables such as the number of input variables in the net, the
number of hidden neurons and the values of k parameter. The
optimization is achieved by means of GADO, a GA specifically
designed for optimization domains [14].

To include the experimental variation explicitly in the
model, a Monte Carlo approach was used in the generation
of the final predicted values. The procedure is similar to that
described in the Section 2.5. It was found that a sequence of
400 pseudo-experiments was sufficient to achieve convergence
of the final predicted values of the average root-mean-square
percentage error and the average correlation coefficient. As
noted previously [14], we confirmed that the results of
prediction are not entirely independent of the choice of train-
ing set. We modified the previous version of ANN by incorpo-
rating a MC procedure that generated random multiple
splitting of the entire polymer set. Repeating the sequence
data split-model trainingevalidation process multiple times
and collecting statistics made it possible to improve the esti-
mation of the predictive accuracy of the current ANN model.

It is important, however, to address here the issue of the pos-
sible occurrence of a feature selection bias in the used procedure
by referring to the articles by Xiong et al. [38] and Ambroise
et al. [39] that provide a useful description of potential pitfalls
associated with this phenomenon. In particular, Xiong et al.
[38] developed a rule for cancer detection based upon gene ex-
pression. First, the authors performed a feature selection (i.e.,
determined the relevant genes) using the entire experimental
data set. This is analogous to our use of the entire experimental
dataset for fibrinogen adsorption in the decision tree to identify
the most relevant descriptors. Second, Xiong et al. developed
a rule for detecting cancer based upon the selected genes using
95% of the experimental data and then tested the rule on the re-
maining 5% of the data. In contrast, we developed a model
(analogous to the rule proposed in [38]) using 50% of the
experimental data and then tested the model on the remaining
50% of the experimental data. Although there may be some
feature extraction bias in our model, it is certainly minimized
by the fact that only 50% of the experimental data were used
to train the model. The current approach to feature extraction
is exactly the same as used by Smith et al. [14,19], which
employed descriptors based on 2D polymer structure. The
improvement of the accuracy of the present predictive model
for fibrinogen adsorption (see Section 3.3 below) is exclusively
due to the incorporation of the more relevant 3D descriptors
derived from realistic polymer structures.

3. Results and discussion

3.1. Results of molecular mechanics and MD simulations

A noticeable difference in polymer conformations was ob-
served after initial molecular mechanics energy minimization
with dramatic variations depending on the chemical composi-
tion and chirality of the polymer. Selected examples of mini-
mized structures are shown in Figs. 3 and 4. The difference
between enantiomers can be clearly seen for L,L and L,R con-
formers of poly(DTsB methyl adipate) minimized in vacuum
(Fig. 3) and implicit water (not shown). For some polymers
helix-like conformers are apparent where the helical shape is
defined exclusively by bond and torsion angles and is not
stabilized by intramolecular hydrogen bonding. This type of
conformers was observed mainly for the polyarylates with a
relatively long aliphatic pendent chain and diacid component.
In the case of poly(DTE dodecandiaoate) the helical-type struc-
ture was observed only in the presence of implicit water.

In our MD simulation we focused mainly on obtaining the
low energy relaxed conformation of each polymer rather than
calculating average thermodynamic properties. As a relevant
example of such properties, the various energy contributions
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Fig. 3. Poly(DTsB methyl adipate) minimized in vacuum. (a) L,L Enantiomer and (b) L,R enantiomer, where the first and second letter define optical isomerism

with respect to the chiral centers on the pendent and diacid, respectively.

Fig. 4. (a) Poly(DTE dodecandioate) and (b) poly(DTH glutarate) minimized in implicit water.
into the total average potential energy are summarized in
Table 2 for two selected polyarylates, which differ only in
the length of the aliphatic diacid component. For compared
molecules, values of corresponding contributions from bond
stretch, angle bend, torsion and solvation terms to the total
interaction potential are approximately the same (or change
insignificantly). In contrast, VDW and especially electrostatic
interactions are responsible for the major difference in the
total potential energy between these two polymers. The impor-
tance of the electrostatic interactions will also reveal itself in
the results of our descriptor analysis (see Sections 3.2 and 3.3).

MD simulations carried out both in vacuum and in implicit
water indicated that a folded coil- or globular-like conforma-
tional pattern is prevalent for all polymers. It is possible that
such a uniform conformational pattern is a result of omitting
specific solvent effects (e.g., hydrogen bonding with water
molecules) due to utilization of an implicit solvation model
[40].

Formation of a globular type conformation did not depend on
the length of the polymer chain. The key torsion angles respon-
sible for the folding of the polymer chain in tetramers were
comparable with those recorded in 20 monomers long structures
(Fig. 5). Some interesting packing trends were observed within
a set of 45 polyarylates (see for example Fig. 6). They include
a tendency of short pendent chains to be packed inside the
globule while the long and especially aliphatic pendants tend
to appear on the surface. Additionally, the polymer segments
represented by aliphatic hydrocarbons fairly often demonstrate
mutual alignment due to hydrophobic interactions. The

Table 2

Various contributions to the total potential energy (kJ/mol) of poly(DTE

glutarate) and poly(DTE dodecandioate) simulated in vacuum and implicit

aqueous environment

Average

energya
DTE

glutarate

(v)

DTE

glutarate

(w)

DTE

dodecandioate

(v)

DTE

dodecandioate

(w)

Bond stretch 25.05 29.58 19.85 23.13

Angle bend 450.04 466.26 471.60 477.73

Torsion 208.57 201.68 222.12 218.00

VDW 50.55 39.80 17.23 �4.52

Electrostatic �790.42 �5.88 �590.74 �4.12

Solvation 0.00 �406.21 0.00 �308.97

U total �56.21 325.23 140.06 401.25

a Average potential energy is scaled to 300 K.
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Fig. 5. Final configurations of 0.7 ns MD run in vacuum. (a) Tetramer of poly(DTE glutarate) and (b) chain of 20 monomers of poly(DTE glutarate).
presence of both face-to-face (parallel or p-stacking) and edge-
to-face (perpendicular) interaction modes between aromatic
rings was also evident. The edge-to-face aromatic interactions
are essential in such biologically important processes as protein
folding and ligand-receptor interactions [41]. Their role in poly-
mer folding as well as the detailed analysis of the variety of
conformational states and interactions found in L-tyrosine-
derived polyarylates will be published elsewhere.

To investigate in more detail the sensitivity of our modeling
approach to the ‘‘level’’ of 3D organization we combined all
simulated polymer structures into three large groups that in-
cluded minimized initial structures, final configurations from
MD simulations and minimized final configurations from
MD runs. The latter appears to be a convenient approximation
of the average polymer structure. In these three conforma-
tional groups (or ‘‘levels’’) the noticeable structural difference
between unfolded initial structures and folded globular-like
conformations is juxtaposed with those represented by subtle
rearrangements of functional groups during the final minimi-
zation of already folded polymer chains. Expansion of this
structural classification onto the polymer sets which were
comprised from L and R optical isomers and taking into ac-
count simulation conditions (vacuum versus implicit water)
allowed us to generate 12 polymer sets of 45 polymers each
and, therefore, to account for a level of 3D organization, chi-
rality and effect of solvent in our next modeling developments.

3.2. Decision tree descriptors result

To generate an input for the DT, a total of 721 3D mole-
cular descriptors (3 89 340 total for all datasets) were calculated
for each polymer in the each of 12 sets. The best descriptors
identified by the MCDT for each polymer set are summa-
rized in Table 3 and their definitions are given in Table 4.

One can see that from all possible 3D descriptors introduced
in Section 2.5 only representatives of three descriptor groups,
namely geometrical, 3D-MoRSE and GETAWAY were found
to be significant with respect to fibrinogen adsorption onto
polymer surfaces. If the definitions of geometrical descriptors
are self-explanatory, the physicochemical meaning encoded
by the descriptors from the latter two groups is not always ob-
vious and requires more detailed explanation. The 3D-MoRSE
descriptors are derived by mathematical transformations of
electron diffraction patterns. This general molecular transfor-
mation represents the scattering in various directions by an
ensemble of spherical scatters (atoms). Its mathematical
Fig. 6. Final configurations of 1 ns MD simulations in implicit water. (a) Tetramer of poly(DTE glutarate) and (b) tetramer of poly(DTE dodecandioate).
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definition is given by the expression for the intensity of scat-
tered radiation, which includes the measured scattering angle
and the form factors represented by atomic properties such as
atomic mass, partial atomic charge, residual atomic electroneg-
ativities and atomic polarizabilities [42]. These descriptors
allow the size-independent representation of the 3D structures
of polymers by a fixed number of variables (i.e., 32 3D-MoRSE
signals) where bioactivity is implicitly tied to electronic
properties of specific sites of polymers [42,43]. In contrast
GETAWAY descriptors are not obtained from experimental

Table 3

The most significant descriptors identified by MCDT for each of 12 sets of

polyarylates described in Section 3.1

Lev. Vacuum Water

L R L R

Minimization

1 Rþ5 (m) Rþ5 (m) Mor6(m) Mor28(m)

2 Rþ6 (u) Mor32(u) R3(u) Mor19(e)

3 Mor32(u) Mor3(p) Rþ7 (e) R3(u)

MD simulations

1 Mor19(p) Mor19(p) HATS3(m) HATS3(m)

2 G(N/O) H0(e) HATS1(m) HATS1(m)

3 G(O/O) G(O/O) G(O/O) G(O/O)

Minimization after MD

1 R4(e) R4(e) HATS1(m) HATS1(m)

2 G(N/O) Mor7(v) G(O/O) G(O/O)

3 Mor7(v) H0(e) R3(u) Mor14(m)

Table 4

Summary of 3D descriptors identified by MCDT as significant with respect to

fibrinogen adsorption

Name Definition 3D class

G(O/O) Sum of geometrical distances between O/O Geometrical

G(O/N) Sum of geometrical distances between O/N

Mor28(u) 3D-MoRSE signal 28, unweighted 3D-MoRSE

Mor19(e) 3D-MoRSE signal 19, weighted by atomic

Sanderson electronegativities

Mor14(m) 3D-MoRSE signal 14, weighted by atomic

masses

Mor28(m) 3D-MoRSE signal 28, weighted by atomic

masses

Mor3(p) 3D-MoRSE signal 3, weighted by atomic

polarizabilities

Mor7(v) 3D-MoRSE signal 7, weighted by van der

Waals volumes

HATS1(m) Leverage weighted autocorrelation of lag

1 weighted by atomic masses

H-GETAWAY

HATS3(m) Leverage weighted autocorrelation of lag

1 weighted by atomic masses

H0(e) H autocorrelation of lag 0 weighted by atomic

Sanderson electronegativities

Rþ6 (u) R maximal autocorrelation of lag 6,

unweighted

R-GETAWAY

Rþ7 (e) R maximal autocorrelation of lag 7, weighted

by atomic Sanderson electronegativities

Rþ5 (m) R maximal autocorrelation of lag 5, weighted

by atomic masses

R3(u) R autocorrelation of lag 3, unweighted

R4(e) R autocorrelation of lag 4, weighted by atomic

Sanderson electronegativities

Note: leverage is a diagonal element of the molecular influence matrix and lag

is defined as a given topological distance.
measurements, rather, the H-GETAWAY descriptors are calcu-
lated from the molecular influence matrix H and R-GETAWAY
descriptors are derived from the influence/distance matrix R
[30]. The diagonal elements (leverages) of the molecular influ-
ence matrix H encode atomic information and represent the
influence of each atom in determining the whole shape of the
molecule. Although the leverage values were shown to be sen-
sitive to significant conformational changes, they account only
implicitly for chemical properties of molecule atoms. H-GET-
AWAY autocorrelation descriptors, e.g., HATSk(w), explicitly
allow consideration of chemical information by combining
geometrical information provided by leverages with atomic
weightings that account for specific physicochemical properties
on an atomistic level. The autocorrelation R-GETAWAY
descriptors, e.g., maximal R indices Rþk (w), are analogously de-
fined based on a new matrix R, where the elements of the matrix
H are combined with those of the geometry matrix G. R indices
are calculated from the autocorrelation at each topological dis-
tance (lag) and account for the local aspects of the molecule
such as branching, cyclicity and conformational changes. A
dependence on conformational changes is expected to increase
as k-index increases [30,31].

The fact that specific classes of 3D descriptors were ranked
as the best by DT leads one to the conclusion that they encode
useful and relevant information with respect to fibrinogen ad-
sorption. It is not a trivial task to relate the descriptors described
above with a generalized conformational specificity presented
in each of 12 polymers sets. However, one can confidently in-
terpret the appearance in Table 3 of descriptors related to geo-
metrical distances between two oxygen atoms and between
oxygen and nitrogen atoms as the importance of electrostatic
interactions and hydrogen bonding, respectively. R indices of
higher order reflect the conformational changes within each
polymer chain while HATS autocorrelations are indicative of
the overall shape of the molecule (similar to our case, lower
leverages were found in molecules of globular-like or spherical
shape [31]). One can also speculate that the presence of 3D-
MoRSE signals implicitly confirms the realistic nature of the
conformations resulting from MD simulations with emphasis
placed on the possible role of electronic structure. In Section
3.3 below the predictive power as well as physicochemical
relevance of the descriptors selected by the MCDT will be
discussed in the context of the ANN prediction.

3.3. ANN prediction of fibrinogen adsorption

The results of the ANN prediction for the sets of polymers
described in Section 3.1 are summarized in Table 5. The accu-
racy of prediction was evaluated by comparison of the pre-
dicted and experimental results for the polymers in the
validation set. In contrast to the previous version of ANN where
the validation set comprised one half of randomly chosen poly-
mers, the MC-modified ANN employed in the present work
allowed for each of 45 polymers to become (at least once)
a part of a validation set, and hence, the hypothetical fibrinogen
adsorption for all polymers to be estimated. The criteria used
for comparison between the prediction and experiment as
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Table 5

Results of ANN for the 12 sets of polyarylates introduced in Section 3.1. The error bars represent the standard deviation of the Pearson correlation coefficient due

to MC perturbation

3D Set Vacuum Water

r Erms% r Erms%

Training Valid. Training Valid. Training Valid. Training Valid.

Minimization

L 0.80� 0.07 0.51� 0.22 21 39 0.85� 0.06 0.63� 0.23 18 38

R 0.79� 0.08 0.54� 0.19 22 41 0.84� 0.07 0.65� 0.16 18 35

MD simulations

L 0.83� 0.07 0.66� 0.15 18 33 0.83� 0.07 0.62� 0.13 18 32

R 0.84� 0.06 0.63� 0.18 18 33 0.85� 0.06 0.67� 0.13 17 29

Minimization after MD

L 0.83� 0.06 0.59� 0.15 18 34 0.84� 0.06 0.64� 0.15 18 31

R 0.83� 0.07 0.61� 0.17 20 36 0.84� 0.06 0.62� 0.17 18 32
well as between the predictions for each polymer set were the
percent root-mean-square (rms) relative error Erms, the Pearson
coefficient r, and the correlation coefficient R2 (not shown in
Table 5) defined by Hawkins [44]. These criteria were priori-
tized in the same order as they appear above. This prioritization
emphasizes the importance for our prediction to be found
within or to approach the range of experimental error (i.e.,
18%, on average). We also prioritized the Pearson coefficient
that ranges from �1� r� 1 in comparison with R2 that ranges
from �N� R2� 1 and whose lower limit is not clearly
defined. Utilization of the Pearson coefficient also allows us
a direct comparison with the previously developed surrogate
models. We recall that Erms and both correlation coefficients
are averaged quantities over 400 MC pseudo-experiments.

From Table 5 one can clearly see that Erms decreases in the
following order of polymer sets: minimization in vacuum (for
L> R isomers)>minimization in water (for R> L isomers)>
minimization after MD in vacuum (for L> R isomers)>
MD in vacuum (for L¼ R isomers)>minimization after MD
in water (R> L isomers)>MD in water (R> L isomers).
The Erms percentage for the last (i.e., the best set with the small-
est error) is 29% and compares favorably with experimental
error of 18%. This result entirely confirms our hypothesis that
MD simulations performed in the presence of water should
provide the most realistic conformations of polymers. We con-
cluded that Erms demonstrates the most consistent and reason-
able trend.

Surprisingly, the correlation coefficient R2 reproduces fairly
well the tendency shown above. Particularly, R2 increases in the
following order: minimization in vacuum (for R> L iso-
mers)>minimization in water (for R> L isomers)>minim-
ization after MD in water (R> L isomers)>minimization
after MD in vacuum (for L> R isomers)>MD in vacuum
(for R> L isomers)>MD in water (R> L isomers). The Pear-
son coefficient does not reproduce this order completely; how-
ever, the best and the worst polymer sets are the same as those
identified using Erms and R2. For the correlation coefficients the
largest inconsistency was noted in the order of performance for
two sets of polymers within which the final MD conformations
were additionally minimized. This somewhat artificial proce-
dure displayed its important role in evaluation of the sensitivity

of 3D descriptors to the small conformational change but pos-
sibly did not improve the quality of final conformations by
‘‘forcing’’ some relaxed polymer structures into the higher en-
ergy local minima. Regarding the sensitivity of 3D descriptors
to the conformational diversity of the polymers, one may
conclude that the inconsistency of the Pearson coefficient for
several polymer sets (as well as the relatively small difference
in the magnitudes of Erms and R2 between sets comprising
noticeably different conformations and simulated under distinc-
tive physical settings) is indicative of overall moderate and, for
some cases, even low, sensitivity of the 3D descriptors to the
conditions investigated in the present study.

Figs. 7a,b and 8a,b,c show selected examples of ANN pre-
diction for validation sets. One can see a significant difference
in the accuracy of ANN models (e.g., size of error bars, distri-
bution of polymers along 45� line) for the polymer sets result-
ing from minimization and MD simulations in vacuum (Fig. 7a
and b). A similar trend is also reflected in the magnitudes of
standard deviation as well as in the number of outliers that
can be noted in Fig. 8a and b for minimization and MD
simulations performed in aqueous environment. Fig. 8b and
c shows prediction for several chiral polymers numbered
accordingly to the convention given in Table 1 as 14, 19, 39,
42 and 43, which were built as L (Fig. 8b) and R (Fig. 8c) iso-
mers with respect to the second chiral center. In this specific
example the set containing R isomers has slightly better
estimated correlation parameters. Overall chirality-related per-
formance of the polymer sets was not always consistent,
though from the trends recorded for Erms and R2 one can see
that overall accuracy of prediction obtained with R isomers
is higher than that for L isomers (R> L notation above). Sig-
nificance of the best and the worst polymer sets in terms of
predictive quality sets were successfully identified with all
the three criteria employed.

Comparison of the present 3D ANN model with the single
2D ANN model developed by Smith et al. [14] shows notice-
able improvement of all estimated parameters. For the best set
(i.e., MD simulations in water, R isomers, Fig. 8c) the ANN
predicts 78% of polymers in the validation set to be within
the range of experimental error in comparison with 70% re-
ported in [14]. The average root-mean-square error for the
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validation set prediction decreased from 38% [14] to 29%
approaching the value of experimental error (18%), while the
average correlation coefficient increased from 0.54� 0.12 to
0.67� 0.13. Comparison with the prediction obtained for the
worst polymer set, namely the structures resulting from the lo-
cal energy minimization in vacuum, did not show noticeable
improvement. In this case, the average root-mean-square error
and the average correlation coefficient for the validation set
were 41% and 0.54� 0.19, respectively. Excellent agreement
was observed between the best prediction achieved in the pres-
ent work and that reported for the extended surrogate model
[19]. Both MD-based and extended PLS/PC ANN models ex-
hibit high quality prediction (the average Pearson coefficient
of about 0.7) entirely in silico without additional incorporation
in the inputs of experimentally measured quantities.

To estimate the quality of our DT analysis we also used
a conventional C5 DT routine (without the MC technique) to
rank descriptors with respect to fibrinogen adsorption measure-
ments. The results obtained were somewhat surprising: only de-
scriptors from R-GETAWAY group were found to be significant
for all 12 sets of polymers. Moreover, the descriptors differ
from one another at most by 2 k-indices and majority of them
were weighted exclusively by van der Waals volume. Further
utilization of these descriptors in ANN modeling resulted
in very poor prediction (i.e., the Pearson coefficient of
0.2� 0.21 and root-mean-square percentage error of 57%) for
the polymer set that was shown to be the most successful
when MCDT was employed. This fact led us to the conclusion
that an application of C5 DT routine does not allow capturing
the conformational diversity between the sets of polymers
and emphasized the importance of accounting for experimental
uncertainty by means of the MC technique.

The ANN results for prediction of fibrinogen adsorption dis-
cussed above may pose a question regarding physicochemical
relevance on the most significant descriptors listed in Table
3. There are two ways to look at this issue. The conventional
way is to consider exclusively descriptors that belong to the
first level of significance; in our case, those with the largest
counts of MC hits. For instance, appearance of Rþk (w) indices
responsible for the conformational change is associated with
the worst ANN model observed for the vacuum minimized
polymers structures. HATSk(w) autocorrelations related to the
conformational shape of the molecule, and which in fact belong
to the same GETAWAY group as R indices, were found on the
first level of DT for the most successful MD-based structural
set. The 3D-MoRSE signals weighted by atomic mass and
3D-MoRSE signals weighted by atomic polarizabilities reflect
fairly different predictive trends.

One could probably find such interpretation limited and even
confusing. Alternatively, when the entire group of the best
descriptors is taken into account then more meaningful and
consistent information can be extracted. Combination of
H-GETAWAYautocorrelations, namely HATS1(m), HATS3(m),
and geometrical descriptors which encode distances between
oxygen atoms, G(O/O), in the most successful polymer sets
derived from MD simulations in water indicates the role of
electrostatic interactions in polymer folding (see also Table 2)
and additionally confirms the realistic nature of this con-
formational pattern. Appearance of G(O/O) descriptors in
conjunction with G(O/N) geometrical distances and 3D-
MoRSE signals weighted by atomic polarizabilities indicates
a slight shift toward H-bonding and van der Waals interac-
tions [45] in intramolecular energy balance for the polymer
conformations resulting from MD simulations in vacuum. It
is also not surprising that the intramolecular interactions
for this set of polymers are not as crucial as the specific geo-
metrical characteristics which are encoded in a combination
of R-GETAWAY and 3D-MoRSE descriptors.

4. Conclusions

A new modeling approach was developed using, for the first
time, 3D molecular descriptors obtained for polymer struc-
tures relaxed into low energy state by molecular dynamics
simulations as inputs into a surrogate model to predict fibrino-
gen absorption onto polymer surfaces. This 3D surrogate
model provided predictions of fibrinogen adsorption that
were better than the predictions of the original 2D surrogate
model by Smith et al. [14] and comparable to the accuracy
of the predictions made by an extended surrogate model re-
cently presented by Smith et al. [19]. The methodology of
the extended 2D model described in [19] is mature and has
probably been driven to its optimal performance. Further de-
velopment of this methodology is therefore not expected to
lead to substantially better model performance. In contrast,
the use of 3D descriptors calculated for realistic structures
of the polymers as inputs into surrogate models is new and
not yet optimized. This approach holds significant promise
and should lead to the development of a model capable of
(i) significantly better predictions of key polymer properties,
and (ii) prediction of properties of polymers in the absence
of experimentally-derived data or descriptors. This last point
is of particular importance given the fact that the experimental
testing of bioresponses (such as protein adsorption, cell attach-
ment, cell growth, and cell differentiation) will always require
laborious experiments that cannot easily be performed for
hundreds of polymers.

The present work was performed in three stages. First, MD
simulations were carried out for a 45 structurally related poly-
mers of polyarylates library for which experimental fibrinogen
adsorption data were previously obtained [21]. Next, 3D de-
scriptors were calculated for molecular structures obtained
from (a) preliminary (local) energy minimization, (b) MD sim-
ulations in vacuum, and (c) MD simulations in implicit water.
Then the Monte Carlo decision tree methodology [14] was uti-
lized to rank the descriptors in order of their correlation to fibrin-
ogen adsorption. Finally, a modified artificial neural network
[14,19] was employed for the assessment of 45 polyarylates in
terms of their susceptibility to fibrinogen adsorption.

The conformational diversity of the chosen polymers first
manifested itself in the minimized structures as a difference
in the initial folding of the main chains associated with the
presence of two chiral centers in some polyarylates. Despite
this, MD simulations indicated that globular-like packing
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pattern is typical for all investigated models where the final
conformations of the polymers differ noticeably in geometry
and configurational energy. Specific intramolecular alignments
due to the different flexibilities of diphenol and diacid compo-
nents of polyarylates are observed. The predictive power and
sensitivity of 3D descriptors were estimated using 12 model
sets of 45 polymers each. These sets were created to account
for the influence of chirality, effect of solvent, and the level
of 3D organization (e.g., minimized structures and conforma-
tions obtained from MD simulations).

MCDTanalysis revealed that the most significant descriptors
with respect to fibrinogen adsorption belong to three major
groups, namely 3D-MoRSE, GETAWAY and geometrical 3D
descriptors. The appearance of these descriptors emphasizes
the importance of specific types of intramolecular interactions
when polymers fold and form different conformational
patterns.

The quality of the final ANN prediction for all polymer sets
was estimated using criteria such as the average root-mean-
square percentage error and correlation coefficients. These
parameters allowed identification of the most successful (MD
simulations in water, R isomers) and the least successful (mini-
mization in vacuum L or R isomers) sets of polyarylates. Com-
parison with the original surrogate model shows that
incorporation of descriptors derived from the polymers simu-
lated in implicit water led to a 9% decrease in the average
root-mean-square error for the validation set prediction. Simul-
taneously, the average correlation coefficient increased from
0.54� 0.12 to 0.67� 0.13. The predictive accuracy of this
MD-based model compares favorably with that obtained for
the ‘‘extended’’ surrogate model [19]. The prediction obtained
for the polymer structures resulting from the local energy
minimization is surprisingly close to that of the original ANN
model: the average root-mean-square error and the average cor-
relation coefficient for the validation set are 41% and 0.54�
0.19, respectively, versus 38% and 0.54� 0.12 as reported in
Ref. [14].

In summary, we conclude that the 3D surrogate model has
four important advantages over the previously described 2D
models. This model takes into account more realistic,
three-dimensional representation of a polymer; it eliminates
experimentally measured descriptors such as airewater
contact angle and glass transition temperature; it has better
predictive qualities than the original 2D model, and it has
significant room for future improvement, based on the utili-
zation of descriptors derived from more sophisticated MD
simulations.
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